Single particle slow dynamics of confined water
نویسندگان
چکیده
منابع مشابه
Slow dynamics of water confined in Newton black films.
Slowdown of translational and reorientational dynamics of water confined in Newton black films (NBFs) is revealed by molecular dynamics simulations. As a film becomes thinner, both translational and reorientational dynamics become slower. The polarization of water molecules in the macroscopic electrostatic field across the NBF and the coordination of Na(+) ions and surfactant anionic groups aro...
متن کاملSlow dynamics of supercooled water confined in nanoporous silica materials
We review our incoherent quasielastic neutron scattering (QENS) studies of the dynamics of supercooled water confined in nanoporous silica materials. QENS data were analysed by using the relaxing cage model (RCM) previously developed by us. We first use molecular dynamics (MD) simulation of the extended simple point charge model (SPC/E) for bulk supercooled water to establish the validity of th...
متن کاملDynamics of confined water molecules.
We present femtosecond midinfrared pump-probe measurements of the molecular motion and energy-transfer dynamics of a water molecule that is enclosed by acetone molecules. These confined water molecules show hydrogen-bond and orientational dynamics that are much slower than in bulk liquid water. This behavior is surprising because the hydrogen bonds to the C=O groups of the acetone molecules are...
متن کاملParticle segregation and dynamics in confined flows.
Nonlinearity in finite-Reynolds-number flow results in particle migration transverse to fluid streamlines, producing the well-known "tubular pinch effect" in cylindrical pipes. Here we investigate these nonlinear effects in highly confined systems where the particle size approaches the channel dimensions. Experimental and numerical results reveal distinctive dynamics, including complex scaling ...
متن کاملDynamics of water confined within reverse micelles.
We report structural and dynamical properties of water confined within reverse micelles (RMs) ranging in size from R = 10 A to R = 23 A as determined from molecular dynamics simulations. The low-frequency infrared spectra have been calculated using linear response theory and depend linearly on the fraction of bulklike water within the RMs. Furthermore, these spectra show nearly isosbestic behav...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Chemistry Chemical Physics
سال: 2000
ISSN: 1463-9076,1463-9084
DOI: 10.1039/a909268d